Aims Recent randomized trials suggest that intensive glycaemic control fails to reduce heart failure-related events in patients with diabetes. The molecular cues underlying persistent myocardial damage despite normoglycaemia restoration remain elusive. MicroRNAs (miRNAs), a class of small non-coding RNAs, orchestrate transcriptional programs implicated in adverse cardiac remodelling. The present study investigates whether miRNAs participate to hyperglycaemic memory in the diabetic heart. Methods and results miRNA landscape was assessed by Mouse miRNome miRNA PCR Arrays in left ventricular specimens collected from 4-month-old streptozotocin-induced diabetic mice, with or without intensive glycaemic control by slow-release insulin implants. A dysregulation of 316 out of 1008 total miRNAs was observed in the diabetic hearts when compared with controls. Of these, 209 were up-regulated and 107 were down-regulated by >2.0-fold. Interestingly enough, the expression of 268 of those miRNAs remained significantly altered in diabetic mice even after subsequent normoglycaemia. Ingenuity pathway analysis revealed that dysregulated miRNAs were implicated in myocardial signalling networks triggering apoptosis (miR-320b, miR-378, miR-34a), fibrosis (miR-125b, miR-150, miR-199a, miR-29b, miR30a), hypertrophic growth (miR-1, miR-150, miR-199a, miR-133a, miR-214, miR-29a, miR-125b, miR-221, miR-212), autophagy (miR-133a, miR-221, miR-212, miR30a), oxidative stress (miR-221, miR-146a, miR-34a, miR-210, miR-19b, miR-125b, miR27a, miR-155), and heart failure (miR-423, miR-499, miR-199a), respectively. Conclusions Glycaemic control is not able to rescue hyperglycaemia-induced alterations of miRNA landscape in the diabetic heart. These findings may provide novel insights to understand why diabetic cardiomyopathy progresses despite normalization of blood glucose levels.

MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart / Costantino, S; Paneni, F; Lüscher, Tf; Cosentino, F. - In: EUROPEAN HEART JOURNAL. - ISSN 0195-668X. - STAMPA. - 37:6(2016), pp. 572-576. [10.1093/eurheartj/ehv599]

MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart

Paneni F;Cosentino F
2016

Abstract

Aims Recent randomized trials suggest that intensive glycaemic control fails to reduce heart failure-related events in patients with diabetes. The molecular cues underlying persistent myocardial damage despite normoglycaemia restoration remain elusive. MicroRNAs (miRNAs), a class of small non-coding RNAs, orchestrate transcriptional programs implicated in adverse cardiac remodelling. The present study investigates whether miRNAs participate to hyperglycaemic memory in the diabetic heart. Methods and results miRNA landscape was assessed by Mouse miRNome miRNA PCR Arrays in left ventricular specimens collected from 4-month-old streptozotocin-induced diabetic mice, with or without intensive glycaemic control by slow-release insulin implants. A dysregulation of 316 out of 1008 total miRNAs was observed in the diabetic hearts when compared with controls. Of these, 209 were up-regulated and 107 were down-regulated by >2.0-fold. Interestingly enough, the expression of 268 of those miRNAs remained significantly altered in diabetic mice even after subsequent normoglycaemia. Ingenuity pathway analysis revealed that dysregulated miRNAs were implicated in myocardial signalling networks triggering apoptosis (miR-320b, miR-378, miR-34a), fibrosis (miR-125b, miR-150, miR-199a, miR-29b, miR30a), hypertrophic growth (miR-1, miR-150, miR-199a, miR-133a, miR-214, miR-29a, miR-125b, miR-221, miR-212), autophagy (miR-133a, miR-221, miR-212, miR30a), oxidative stress (miR-221, miR-146a, miR-34a, miR-210, miR-19b, miR-125b, miR27a, miR-155), and heart failure (miR-423, miR-499, miR-199a), respectively. Conclusions Glycaemic control is not able to rescue hyperglycaemia-induced alterations of miRNA landscape in the diabetic heart. These findings may provide novel insights to understand why diabetic cardiomyopathy progresses despite normalization of blood glucose levels.
2016
diabetic cardiomyopathy; micrornas; epigenetics; glycemic control; cardiovascular disease
01 Pubblicazione su rivista::01a Articolo in rivista
MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart / Costantino, S; Paneni, F; Lüscher, Tf; Cosentino, F. - In: EUROPEAN HEART JOURNAL. - ISSN 0195-668X. - STAMPA. - 37:6(2016), pp. 572-576. [10.1093/eurheartj/ehv599]
File allegati a questo prodotto
File Dimensione Formato  
Costantino_MicroRNA_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 421.04 kB
Formato Adobe PDF
421.04 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1088532
Citazioni
  • ???jsp.display-item.citation.pmc??? 73
  • Scopus 144
  • ???jsp.display-item.citation.isi??? 130
social impact